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Abstract
Persian leopards Panthera pardus saxicolor have been extirpated from over 84% of their historic range and are now limited to
rugged landscapes ofWest Asia and the Caucasus. Understanding and maintaining genetic diversity and population connectivity
is important for preventing inbreeding and genetic drift, both of which can threaten population viability. All previous analyses of
intraspecific genetic variation of West Asian leopards based on the NADH dehydrogenase subunit 5 gene have reported low
mitogenomic diversity. In the current study, we sequenced 959 bp of the mtDNA cytochrome b gene to describe the spatial
genetic structure of 22 wild Persian leopards across Iran, which hosts most of the subspecies extant range. The findings based on
phylogenetic trees and median-joining network indicated that leopards from Iran formed a distinct subclade, i.e., P. p. saxicolor.
The AMOVA analysis showed significant differentiation (88.55%) between the subclades of Persian leopards and other Asian
leopards. The lowest levels of haplotype (0.247) and nucleotide (0.00078) diversity were estimated in Persian leopards from Iran.
Mitochondrial genome sequencing revealed only two closely related haplotypes. There was no evidence for recent sudden
demographic expansion scenario in Persian leopards. The low diversity in cytochrome b gene could potentially be brought about
by selective pressure on mitochondria to adapt to oxidative stress and higher metabolic rates in cold environments.
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Introduction

As a large-bodied, wide-ranging felid, the leopard Panthera
pardus has evolved to persist across a diverse range of habitat
types (Jacobson et al. 2016). Adapting to extreme heteroge-
neity across its vast global range has resulted in remarkable

morphological variation, encouraging taxonomists to describe
up to 27 putative subspecies (Ellerman and Morrison-Scott
1966; Herrington 1986), recently revised to only 8 subspecies
(Kitchener et al. 2017). Leopards also show higher genetic
diversity than many other big cats such tigers P. tigris (Luo
et al. 2004), jaguars P. onca (Wultsch et al. 2016) and snow
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leopards P. unica (Janecka et al. 2017). Nonetheless, their
heterozygosity is not spatially homogenous across their global
range (Uphyrkina et al. 2001).

West Asian leopards have been the subject of controversies
surrounding their taxonomy, phylogeography, population genet-
ic structure, and variability (Khorozyan et al. 2006; Kitchener
et al. 2017). A total of seven putative subspecies has been report-
ed for the region (Herrington 1986), althoughmany of themwere
recently identified as synonyms based on molecular analyses
(Uphyrkina et al. 2001; Rozhnov et al. 2011; Farhadinia et al.
2015). Currently, two subspecies P. p. saxicolor = P. p. dathei =
P. p. sindica =P. p. ciscaucasica =P. p. tulliana andP. p. nimr =
P. p. jarvisi are proposed for West Asia (Kitchener et al. 2017).
Several recent studies have provided understanding of taxonomy,
phylogeography, spatial population structuring, and genetic var-
iability based on ancient samples (Paijmans et al. 2018) aswell as
recent mitogenome sequencing in West Asian leopards, such as
Iran (Farhadinia et al. 2015), the Caucasus (Rozhnov et al. 2011),
and Pakistan (Asad et al. 2019).

Nonetheless, all previous analyses of intraspecific genetic
variation of West Asian leopards have been limited to only
one mitochondrial gene, the NADH dehydrogenase subunit 5
(NADH-5), which exhibits relatively high rates of mutation in
leopards (Miththapala et al. 1996; Uphyrkina et al. 2001),
accounting for 44 of 50 variable sites found inmtDNA regions
of the leopards (Uphyrkina et al. 2001). Surprisingly, low
mitogenomic diversity was reported in all studied populations
of Persian leopards, from Pakistan to Iran and the Caucasus
(Rozhnov et al. 2011; Farhadinia et al. 2015; Asad et al.
2019). Mitochondrial analyses of nearly 100 wild-born leop-
ards revealed no more than 8 haplotypes across West Asia.

Mitochondrial markers have been extensively used to reveal
the stochastic processes of coalescence and lineage sorting of
leopards (Uphyrkina et al. 2001, 2002; Rozhnov et al. 2011;
Farhadinia et al. 2015; Ropiquet et al. 2015; Paijmans et al.
2018). The objective of our study was to clarify if the low
mitgenomic variation in Persian leopards is only seen on
NADH-5 gene or other genes, with high variability in other
leopard populations, will also show similar patterns in Persian
leopards. Accordingly, the present study aims to evaluate the
genetic variability of leopards using another mtDNA gene
which has never been tested for West Asian populations.
Within the leopard mitogenome, cytochrome b (cyt b) coding
genes exhibit high levels of both inter- and intrapopulation
variability (Uphyrkina et al. 2001; Ropiquet et al. 2015). We
use a spatially representative sample of Persian leopards in Iran,
which hosts 86% of the subspecies extant range (Jacobson et al.
2016).With the demand for leopard capturing and translocation
in order to resolve the threat of severe livestock raiding (Weise
et al. 2015; Farhadinia et al. 2018) or to restore the historic
range of the species (Rozhnov et al. 2011; Breitenmoser et al.
2014), our findings are helpful for understanding spatial genetic
structure and phylogeography of leopards in West Asia.

Materials and methods

Sample collection and DNA extraction

Weobtained 22 tissue samples, from bothmuscle and skin, from
wild-born dead leopards confiscated from poachers or live indi-
viduals captured for a satellite telemetry program, all with
known geographic origin in Iran (Fig. 1 and Supplementary
Table 1; permissions number 31/12630, 93/16270, 93/16258,
and 93/16270 issued by the Iranian Department of
Environment). Samples were collected from three major regions
of leopard range associatedwithmajormountain chains, namely,
Zagros, Alborz, andKopet Dag (Fig. 1). All samples were stored
in 96% ethanol until further analysis. Total DNA was extracted
from leopard tissue samples using a standard phenol/chloroform
method described in Sambrook et al. (1989), employing negative
controls for each batch of extractions. No detectable DNA (as
visualized on agarose gel) or polymerase chain reaction (PCR)
product was obtained from any of the negative controls.

DNA sequencing

We used leoF: GACYAATGATATGAAAAACCATCGTTG/
Leo-R: GTTCTCCTTTTTTGGTTTACAAGAC for a fragment
of 959 bp cyt b amplification (Ropiquet et al. 2015). For each
reaction, 35 cycles were performedwith 5min initial denaturation
at 95 °C followed by denaturation at 94 °C for 0.5 min, 1.5 min
annealing at 50 °C, 1min extension at 72 °C, followed by a 5min
final extension at 72 °C. The PCRproductswere checked in 1.5%
agarose gels. Purification was carried out using column-based
purification kits (Millipore) using a vacuum for filtering.
Sequences were visualized using an ABI-3730xl genetic analyzer
(Applied Biosystems; http://www.appliedbiosystems.com).

Data analysis

We aligned sequences using the progressive pairwise align-
ment implemented in Geneious® 11.0.3 to a 959 bp segment
of mtDNA cyt b. New sequences were combined with 50
GenBank entries (Supplementary Table 2) to create the data
set in order to clarify the phylogenetic relationships among
leopard (P. pardus) populations. Lion (P. leo) (KC701376
and KM374704) and tiger (P. tigris) (AF053053,
AF053054, and DQ151551) were used as outgroups, follow-
ing Ropiquet et al. (2015).

Substitution saturation was analyzed using DAMBE6 (Xia
2017). The best-fit substitution models were evaluated using the
corrected Akaike Information Criterion (AICc) and the Bayesian
information criterion (BIC) calculated in PartitionFinder 2.1.1
(Lanfear et al. 2017). The Bayesian inference was reconstructed
using MrBayes 3.2 (Ronquist et al. 2012) in four Monte Carlo
Markov chains for 50,000,000 generations and tree sampling ev-
ery 100 generations. IQ-TREE 1.6 (Nguyen et al. 2015) was used
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for inferring the maximum likelihood tree with 10,000 replicates.
The median-joining network was inferred using Network 10.0
(available at http://www.fluxusengineering.com/sharenet.htm),
in order to reconstruct the relationships among haplotypes.

AMOVA (analysis of molecular variance), ΦST (genetic dis-
tance), andNm (gene flow) statistics were calculated with 10,000
iterations using Arlequin 3.5 (Excoffier and Lischer 2010).
Haplotype diversity, nucleotide diversity, number of polymor-
phic sites, number of haplotypes, and average number of nucle-
otide differences were calculated using DnaSp 5 (Librado and
Rozas 2009). The neutrality tests of Tajima’s D (Tajima 1989),
Fu’s FS (Fu 1997), and R2 (Ramos-Onsins and Rozas 2002)
were calculated in Arlequin 3.5 (Excoffier and Lischer 2010)
and DnaSp 5 (Librado and Rozas 2009) to test the hypothesis
of selective neutrality and to examine for evidence of a recent
demographic expansion (Ramírez-Soriano et al. 2008).

Results

Totally, 22 samples of Persian leopard across Iran were se-
quenced for the 959 bp segment of the mtDNA cyt b. A total

of two haplotypes were detectedwithin the 22 individuals from
Iran, namely, IRAN4 (N = 21 individuals) and IRAN5 (N = 3
individuals), which have been deposited in GenBank with ac-
cession numbers MK028952 and MK028953. The nucleotide
differences between the two haplotypes were three transitions.

Haplotype IRAN4 occurred commonly across the study ar-
ea, whereas the haplotype IRAN5 was detected only in the
Alborz region (Fig. 1). Additional sequences from global geo-
graphic range of the species extracted fromGenBankwere used
in the phylogenetic analyses, where the final dataset contained
72 sequences and 22 haplotypes (Table 3). Result of substitu-
tion saturation indicated that base substitutions did not reach
saturation, so the dataset can be used in phylogenetic analyses.

The phylogenetic analyses (Bayesian and maximum likeli-
hood trees) resulted in identical topologies included two
clades: Asian and African. Each of these clades was
subdivided into two subclades (Fig. 2). These clades and
subclades are very well supported by bootstrap values and
posterior probabilities. The leopard living in Iran formed a
distinct subclade that fell into the Asian clade. The median-
joining network (Fig. 3) also demonstrated the subclades and
clades detected in the phylogenetic trees.

Fig. 1 Spatial distribution of
sampling locations and cyt b
haplotypes of Persian leopard in
Iran. Leopard extant range is
obtained from Jacobson et al.
(2016)
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The pairwise ΦST values indicated significant differences
among the identified subclades (ranging from 0.732 to 0.945).
The lowest distance (0.732) occurred between two African
subclades, with Nm value of 0.183. The highest distance
(0.945) estimated between the Asian subclade A (Persian
subclade) and African subclade A, with Nm value of 0.029
(Table 1). Persian leopards exhibited smaller distance to other
Asian leopards (India and East Asia) than African leopards.
The AMOVA results revealed significant differentiations be-
tween the two identified subclades within each of the Asian
(genetic variations between subclades = 88.55%) and African
(genetic variations between subclades = 73.17%) clades
(Table 2).

The lowest levels of haplotype (0.247) and nucleotide
(0.00078) diversity were estimated in Persian leopards
(Asian subclade A), whereas the highest values of haplo-
type (0.942) and nucleotide (0.00795) diversity were cal-
culated in the African subclades (Table 3). The results of
the neutrality tests (Fu’s FS = 2.272, Tajima’s D = − 0.260,
R2 = 0.1234) were not significant for Persian leopards,
where negative value was only calculated for Tajima’s D
test. Thus, the sudden population expansion scenario can
be rejected in Iran. However, the neutrality tests for the
African subclade A were significantly negative (Fu’s FS =
− 5.873, p < 0.01; Tajima’s D = − 1.21; R2 = 0.835,
p < 0.05).

Fig. 2 Phylogenetic relationships
of Persian leopards (Asian
subclade A) with other identified
subclades of leopard (P. pardus)
derived from a sequence of
959 bp mtDNA cyt b and rooted
with P. leo and P. tigris. The
numbers on the branches are
bootstrap values and posterior
probabilities in the maximum
likelihood and Bayesian analysis,
respectively. IRAN4 and IRAN5
denote detected haplotypes in the
present study. For detailed
information on sequences, see
Table S1
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Discussion

We found low mitogenome diversity for Persian leopards in
Iran without substantial population subdivision, based on the
mtDNA cyt b gene. Our data supported a common maternal
genealogy for leopards in West Asia and the Caucasus
(Rozhnov et al. 2011; Farhadinia et al. 2015) without evidence
of demographic expansion. The unstructured matrilines suggest
that Iran’s leopards currently form a single gene pool, although
nuclear markers are needed to confirm this hypothesis.

Previous studies found low haplotype diversity in leopards
living in West Asian mountains, such as Pakistan, Iran,
Turkmenistan, and the Caucasus based on NADH-5 gene
(Rozhnov et al. 2011; Farhadinia et al. 2015; Asad et al.
2019). Our analyses using another mitochondrial marker,
i.e., cyt b confirmed the low variability in mitogenomic se-
quences of leopards. Similarly, snow leopards, another
Panthera species roaming Asia’s rugged mountains (Janecka
et al. 2017), show low haplotype diversity. In contrast, other
wide-ranging large carnivores in Asian highlands such as
brown bear Ursus arctos and Himalayan gray wolf Canis
himalayensis show remarkable haplotype diversity
(Murtskhvaladze et al. 2010; Ashrafzadeh et al. 2016;
Werhahn et al. 2018). Felids, especially Panthera species,
have the most recent divergence time and consequently a low-
er molecular evolution rate compared with Ursids and Canids
(Wayne et al. 1991). This has resulted in little intraspecific
genetic diversity and shorter inter-specific genetic distances
(Slattery et al. 2000; Kim et al. 2016).

The mitochondrial genomes of leopards are highly variable
across most of their global range (Uphyrkina et al. 2001;
Ropiquet et al. 2015; Anco et al. 2017). There are two poten-
tial hypotheses for low haplotype diversity in Persian

Fig. 3 Median-joining network
of Persian leopards and other
Asian and African leopards
(P. pardus) displaying the
relationships among identified
subclades based on a 959 bp
segment of the mtDNA cyt b.
Haplotypes inside dark red circles
denote to IRAN4 and IRAN5
obtained from Persian leopards in
this study

Table 1 Pairwise ΦST values (below diagonal) and gene flow (Nm,
above diagonal) between Persian leopards (Panthera pardus saxicolor)
(Persian subclade) and other identified subclades of leopard (P. pardus)
using 959 bp mtDNA cyt b sequences

1 2 3 4

Asian subclade A (Persian) – 0.090 0.029 0.059

Asian subclade B (non-Persian) 0.847* – 0.045 0.064

African subclade A 0.945* 0.917* – 0.183

African subclade B 0.895* 0.885* 0.732* –

*p < 0.05
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leopards. From the demographic perspective, this scenario can
be inherited from bottleneck events in recent or historic times
(Ellegren and Galtier 2016), similar to Amur tiger P. t. altaica
(Russello et al. 2004), Amur leopard P. p. orientalis
(Uphyrkina et al. 2002), and Asiatic cheetah Acinonyx jubatus
venaticus (Charruau et al. 2011). All these have experienced a
recent or ongoing demographic bottleneck with a small
founding population. Although Persian leopards survived
widespread eradication attempts in the Caucasus during the
1900s, leaving a few dozen (Khorozyan and Abramov 2007),
no contemporary demographic bottleneck is known from Iran,
with an estimated population of between 550 and 850 individ-
uals and wide distribution by the end of the 1900s (Kiabi et al.
2002) with some areas harboring high leopard densities
(Farhadinia et al. 2019). It is therefore less likely that demog-
raphy can comprehensively explain the current genetic pattern
in Persian leopards.

Alternatively, it might be associated with the selective pres-
sure on endothermic vertebrates to cope with the combined
effects of hypoxia and cold stresses at high altitudes (Cheviron

and Brumfield 2012). There, they need adaptive evolution of
the mitochondrial oxidative phosphorylation system to regu-
late oxygen usage and energy metabolism (da Fonseca et al.
2008; Hassanin et al. 2009; Werhahn et al. 2018). Similarly
for another montane-living large felid, Janecka et al. (2017)
suggested that the snow leopard mitogenome may have un-
dergone selective pressure in hypoxic environments, resulting
in low mitochondrial diversity. Future researches can test this
hypothesis using leopards sampled at different elevations an-
alyzed for candidate hypoxia genes (Zhang et al. 2014;
Werhahn et al. 2018).

These findings support a distinction between Asian and
African leopard populations. We found additional strong sup-
port for the divergence between Persian leopards and other
Asian leopards. In parallel with previous works (Uphyrkina
et al. 2001; Rozhnov et al. 2011; Farhadinia et al. 2015), our
study confirms a monophyletic group for the Iranian female
lineage. The pattern can be expanded to leopards from other
West Asian countries within the range of Persian leopard to
share similar monophyletic group with Iran (Rozhnov et al.
2011; Asad et al. 2019). Lack of substantial population sub-
division suggests that Iran’s leopards currently form a single
gene pool.

We acknowledge that our results are limited by the use of
mtDNA, and consequently single locus data. However, our
spatially representative samples from the majority of Persian
leopard range along with previous sequencing from other
range countries in West Asia will provide the basic under-
standing in mitochondrial variability, partitioning, and phylo-
geographic patterns of leopards in West Asia. Nonetheless,
further studies are encouraged to apply multi-locus sampling
to reveal fine-scale population structure and variability. Also,
leopard samples from central Asian countries such as
Afghanistan, Turkmenistan, and Kazakhstan can further en-
hance our understanding about the phylogeorgraphy and tax-
onomy of Persian leopards. Importantly, in most countries in

Table 3 Genetic statistics for the 959 bp mtDNA cyt b sequences of Persian leopards (Panthera pardus saxicolor) (subclade A) compared with other
identified subclades of leopard (P. pardus)

n h Hd π K P Fu’s FS Tajima’s D Ramos-Onsins
and Rozas’s R2

Clade/subclade

Asian clade 27 5 0.499 0.00396 3.772 17 0.1096

Subclade A (Persian) 22 2 0.247 0.00078 0.740 3 2.272 − 0.260 0.1234

Subclade B (non-Persian) 5 3 0.800 0.00315 3.000 6 1.342 0.286

African clade 45 24 0.958 0.01434 13.651 59 0.1102

Subclade A 20 13 0.942 0.00361 3.437 18 − 5.873* − 1.214 0.835*

Subclade B 25 11 0.897 0.00795 7.567 30 0.651 − 0.178 0.1197

Total 72 29 0.915 0.02604 24.789 95 0.1279

n sample size, h number of haplotypes,Hd haplotype diversity, π nucleotide diversity, k average number of nucleotide differences, P polymorphic sites

Statistical significance: *p < 0.05

Table 2 AMOVA results for testing genetic variation between Persian
leopards (Panthera pardus saxicolor) and other identified subclades of
leopard (P. pardus) using the 959 bp mtDNA cyt b sequences

Source of variation d.f. Percentage
of variation

Fixation
index (ΦST)

p value

Asian clade

Among subclades 1 88.55 0.89 < 0.000

Within subclades 25 11.45

Total 26

African clade

Among subclades 1 73.17 0.73 < 0.000

Within subclades 43 26.83

Total 44
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West Asia and the Caucasus, the majority of the remaining
leopard range is along international borders, and thus in most
countries, conservation of these subspecies is dependent on
transboundary collaboration (Farhadinia et al. 2020).
Therefore, a trans-national genetic analysis with samples
representing the range of the P. p. saxicolor to understand
the gene flow and spatial differentiation is desirable.
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